# Statistics: Used and Abused Tools of the Trade

#### Scott Staggenborg Kansas State University





### Statistics

- Tools for making decisions
  - "Is the untreated different than the treated?"
  - "What is the optimum fertilizer rate or seeding rate?"
  - "How much does delayed planting affect corn yields?"

## We want to do this with some confidence about our final decision.

- We also want to make informed decisions
- "If you cannot measure it, you cannot manage it"

#### Data and Distributions

The basis for statistical decisions



- Yield data
  - A **population** of 11,196 points Mean = 123.8 bu/a Min = 2.1 bu/a Max = 276.7 bu/a Standard Deviation = 35.1

#### Data and Distributions

The basis for statistical decisions



• Yield data

11,196 points

Mean = 123.8 bu/a

Min = 2.1 bu/a

Max = 276.7 bu/a

Standard Deviation = 35.1

#### Confidence or Risk in Statistics The basis for statistical decisions

#### Mean is often best forecast

| farm A | farm B |
|--------|--------|
|        |        |

#### Five year average return per acre



How much confidence do you have in the \$20 estimate?

When analyzing data

- The mean is a powerful measure/concept
- However, the mean does not convey all important and relevant information.
- We often also want to consider the variability in the data.

#### Measures of variability

- Range -- the difference between the largest reading and the smallest reading.
- Standard deviation -- a measurement of the total variability of the data. It is an average of deviations from the mean.
- Coefficient of variation (CV) -normalized measure of variability equal to standard deviation divided by the mean.

$$s = \sqrt{\frac{\sum (x_i - x)^2}{n - 1}}$$

#### Standard deviation

- Same unit of measure as the original data
- Affected by extreme values, which tend to enlarge the standard deviation.
- Larger values for standard deviation indicate the data are more widely dispersed around the mean (i.e., more variable).
- Generally has the most meaning when data are normally distributed.

#### **Probabilities and Statistics**



### Statistical Tests Often Used

- Mean Comparison
  - We have two or more products and we want to know if the response of one is **different** than the other
- Trend Analysis
  - We have a range of treatments of the same product and we want to know the **optimum**
- Spatial Analysis
  - Not going to talk about today

### Mean Comparisons

#### Analysis of Variance

#### TABLE 4 continued. NORTHEAST KANSAS SPRINKLER IRR

|         |             | Т      | Topeka, Shawnee County |         |       |        |     |     |
|---------|-------------|--------|------------------------|---------|-------|--------|-----|-----|
|         |             | YIELD  | PAVG                   | TW      | MOIST | DAYS   | LDG | 100 |
| BRAND   | NAME        | (bu/a) | (%)                    | (lb/bu) | (%)   | (silk) | (%) | pp  |
| RENZE   | 1357YGPL/RR | 188    | 99                     | 57      | 17    | 64     | 0   | 24  |
| RENZE   | 5347HX1/LL  | 192    | 101                    | 56      | 18    | 66     | 2   | 25  |
| RENZE   | 8386YGCB    | 186    | 98                     | 55      | 19    | 67     | 3   | 24  |
| RENZE   | 8428YGCB    | 177    | 93                     | 56      | 18    | 65     | 1   | 25  |
| RENZE   | 9328YGCB/RR | 195    | 102                    | 57      | 19    | 65     | 2   | 24  |
| RENZE   | 9386YGCB/RR | 178    | 93                     | 57      | 18    | 65     | 0   | 25  |
| TAYLOR  | 77640 RR    | 185    | 97                     | 58      | 16    | 64     | 1   | 24  |
| TAYLOR  | 930 RR/Bt   | 181    | 95                     | 56      | 16    | 63     | 2   | 24  |
| TRIUMPH | 1608VT3     |        |                        |         |       |        |     |     |
| TRIUMPH | 1866Bt      |        |                        |         |       |        |     |     |
| TRIUMPH | 1977CbRR    |        |                        |         |       |        |     |     |
|         | AVERAGE     | 190    | 190                    | 56      | 18    | 65     | 2   | 25  |
|         | CV (%)      | 9      | 9                      | 2       | 9     | 2      |     | 0.  |
|         | LSD (.05)   | 24     | 14                     | 2       | 2     | 2      | 4   | 2.  |

\* Seed treatments and hybrid traits located in Table 16.

\*\* Yields in bold are in the top LSD group.

\*\*\* Unless two hybrids differ by more than the LSD, little confidence can be placed in one being superior

### Mean Comparisons

#### Analysis of Variance

| Replication Hyb A H |                      | Hyb E    | 3                 |       |                                      |                                                                                                                                                                                           |   |  |
|---------------------|----------------------|----------|-------------------|-------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 1<br>2              | 1<br>1<br>1          | 59<br>61 | <br>158<br>155    |       | •Where the o<br>in the distrib       | <ul> <li>"Probability of F"</li> <li>•Where the calculated F-Statistic f<br/>in the distribution . F is a normal<br/>distribution and can be used to<br/>estimate probablities</li> </ul> |   |  |
| 3                   | 1                    | 59       | 156               |       | distribution a estimate pro          |                                                                                                                                                                                           |   |  |
| 4<br>Average        | 4 165<br>Average 161 |          | <u>153</u><br>156 |       | •1-(Pr>F) could be thought of as the |                                                                                                                                                                                           |   |  |
| St. Dev             | 2                    | 2.8      | 2.1               |       | connuence                            |                                                                                                                                                                                           |   |  |
|                     |                      |          |                   |       |                                      |                                                                                                                                                                                           |   |  |
| Sou<br>Var          | urce of<br>iation    | Di       | :                 | SS    | F                                    | Prob > F                                                                                                                                                                                  | - |  |
|                     | Rep                  |          |                   |       | 2.37/34.38                           |                                                                                                                                                                                           | - |  |
| _                   |                      | 3        |                   | 2.37  | = 0.97                               | 0.97                                                                                                                                                                                      |   |  |
| ł                   | Hybrid               | 1        | 13                | 36.12 | 136.12/34.38<br>= <b>11.88</b>       | 0.04                                                                                                                                                                                      | _ |  |
|                     | Error 3 34.38        |          | 4.38              |       |                                      | -                                                                                                                                                                                         |   |  |

### LSDs and Alphas

- We see LSD<sub>(0.05)</sub> and "significant at the alpha = 0.10" or "not statistically significant" in research reports.
- What does it mean?
- "Significant " in statistics means "at the level of risk we are willing to accept that the evidence (sampled data) is sufficient to accept or discredit our H<sub>0</sub>"

#### Analysis of Variance



#### Analysis of Variance



Case 1: Small apparent difference between sample means Likely decision: do not reject  $H_0$ 



Case 2:

Large apparent difference between sample means Likely decision: reject  $H_0$ 



FIGURE 10.1 Null and Alternate Hypotheses in Analysis of Variance (ANOVA)

source: McGrew and Monroe (2000)

### Mean Comparisons

#### Analysis of Variance

| Replication | Hyb A | Hyb B  | Hyb A | Hyb B    |
|-------------|-------|--------|-------|----------|
| 1           | 159   | 158    | 155   | 145      |
| 2           | 161   | 155    | 160   | 150      |
| 3           | 159   | 156    | 162   | 160      |
| 4           | 165   | 153    | 168   | 169      |
| Average     | 161   | 156    | 161   | 156      |
| St. Dev     | 2.8   | 2.1    | 5.4   | 10.7     |
|             |       |        |       |          |
| Source of   |       | Prob > |       | Prob > F |
| Variation   |       | F      |       |          |
| Rep         |       | 0.97   |       | 0.11     |
| Hybrid      |       | 0.04   |       | 0.21     |

#### Analysis of Variance

"But it is 6 bu/a different"



### **Risk and Research**

- Academics and researchers have been conditioned to be low risk takers because our results turn into recommendations in real life.
- We want to be VERY certain that narrow rows are better than wide rows before a farmer spends big \$\$\$ to switch.
- However, in real life, 95% confidence (5% Pr > F) is not always likely necessary.

#### Probabilities and Decisions?

| Treatment         | Cost (\$/acre) | Benefit  | Level ? |  |
|-------------------|----------------|----------|---------|--|
| Soybean Inoculant | \$ 1.00        | 2 bushel | 51%     |  |

### Analysis of Variance Examples

| Plant Population (32,000 and 40,000 plants/acre) |     |     |     |     |     |     |     |     |     |      |     |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|
|                                                  | LY1 | LY2 | LY3 | LY4 | LY5 | LY6 | LY7 | LY8 | LY9 | LY10 | Avg |
| Normal                                           | 245 | 187 | 223 |     | 207 | 166 | 132 | 199 | 109 | 210  | 186 |
| High                                             | 237 | 172 | 226 |     | 196 | 175 | 127 | 191 | 95  | 209  | 181 |
|                                                  | -8  | -16 | 3   |     | -11 | 9   | -5  | -8  | -13 | -1   | -6  |

Bold numbers indicate years when means were different at the 10% level

| Fertilizer |     |     |     |     |     |     |     |     |     |      |     |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|
|            | LY1 | LY2 | LY3 | LY4 | LY5 | LY6 | LY7 | LY8 | LY9 | LY10 | Avg |
| Normal     | 230 | 176 | 221 | 230 | 195 | 165 | 122 | 195 | 98  | 211  | 184 |
| High       | 252 | 183 | 228 | 248 | 208 | 175 | 137 | 196 | 105 | 208  | 194 |
|            | 21  | 7   | 8   | 18  | 13  | 10  | 15  | 1   | 7   | -3   | 10  |

Bold numbers indicate years when means were different at the 10% level

#### E. Nafziger: "Managing continuous corn for high yields" white paper

### **Comparing Treatments**

- Often we get data from a large number of different studies and want to use them to give us a better picture of the situation.
- How do we compare all of these results?
- Simple comparisons are often vary useful.

### Soybean Row Spacing Example

- When narrow row soybeans were being studied, a lot of results were being generated by universities.
- It seemed that some environments worked well, others did not?
- A **difference plot** can often be useful in determining environmental impacts.

### Soybean Row Spacing Example

|      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                           |             |                |                 |                                                |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|-------------|----------------|-----------------|------------------------------------------------|--|--|--|--|
| 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Boo                       | k1 - Micros | oft Excel      |                 | Accumulate data                                |  |  |  |  |
|      | Home Insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Page Layout F      | -ormulas Da               | ata Review  | View Developer | Add-Ins Acrobat | • Calculate the differences                    |  |  |  |  |
|      | Arial $\downarrow$ 16 $\downarrow$ = = = $\blacksquare$ Number $\downarrow$ $A$ $\blacksquare$ Insert $\downarrow$ $\Sigma \downarrow$ $\blacksquare$ hetween the treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                           |             |                |                 |                                                |  |  |  |  |
| Pa   | Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste<br>Paste |                    |                           |             |                |                 |                                                |  |  |  |  |
| Clip | Clipboard S Font S Alignment S Number S Cells Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                           |             |                |                 |                                                |  |  |  |  |
| 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x <b>≫ %</b> * * : | += ∓                      |             |                |                 | •Difference as the Y                           |  |  |  |  |
|      | E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - (0               | <i>f</i> <sub>x</sub> 1.2 |             |                |                 | <ul> <li>Location average as the X.</li> </ul> |  |  |  |  |
|      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                  | С                         | D           | E              | F               | G                                              |  |  |  |  |
| 1    | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Year               | 7.5 In                    | 30 in       | Difference     | Loc Avg         |                                                |  |  |  |  |
| 2    | Manhattan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1997               | 10.6                      | 13.2        | -2.6           | 11.9            |                                                |  |  |  |  |
| 3    | Ottawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1998               | 19.4                      | 19.7        | -0.3           | 19.6            |                                                |  |  |  |  |
| 4    | Lincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1998               | 25.5                      | 24.3        | 1.2            | 24.9            |                                                |  |  |  |  |
| 5    | SW IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1999               | 31.8                      | 29.8        | 2.0            | 30.8            |                                                |  |  |  |  |
| 6    | Lincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999               | 32.4                      | 29.8        | 2.6            | 31.1            |                                                |  |  |  |  |
| 7    | Mead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000               | 34.0                      | 31.5        | 2.5            | 32.8            |                                                |  |  |  |  |
| 8    | Manhattan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000               | 34.4                      | 36.3        | -1.9           | 35.4            |                                                |  |  |  |  |
| 9    | Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000               | 38.1                      | 37.2        | 0.9            | 37.7            |                                                |  |  |  |  |
| 10   | MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000               | 40.9                      | 37.8        | 3.1            | 39.4            |                                                |  |  |  |  |
| 11   | VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2001               | 45.0                      | 40.8        | 4.2            | 42.9            |                                                |  |  |  |  |
| 12   | Ark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2001               | 44.6                      | 43.3        | 1.3            | 44.0            |                                                |  |  |  |  |
| 13   | Manhattan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2001               | 48.0                      | 44.8        | 3.2            | 46.4            |                                                |  |  |  |  |
| 14   | Ottawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2001               | 51.0                      | 45.8        | 5.2            | 48.4            |                                                |  |  |  |  |

#### Soybean Row Spacing Example



Average Site Yield (bu/acre)

#### Foliar Fungicides – Corn

A. Robinson – Iowa St. Univ.



#### Foliar Fungicides – Corn

**Northeast Rotated Corn** 



#### Corn Fungicides in Kansas



### **Regression Analysis**

- "Line fitting" Analysis
- Is the most appropriate analysis method for rate related data such as planting date, planting rate, fertilizer rates.
- Easy to conduct
- Requires less knowledge of "statistics" as we are often looking for optimums.

### **OverWorked and Mis-Used LSDs**

| N Rate<br>(Ibs/acre) | Corn Yield<br>(bu/acre) |                      |
|----------------------|-------------------------|----------------------|
| 0                    | 99 C                    | Based on these data, |
| 40                   | 151 b                   | most people would    |
| 80                   | 192 a                   | lbs/acre is the      |
| 120                  | 204 a                   | optimum amount.      |
| 160                  | 207 a                   |                      |

#### Corn Yield and N



#### Corn Yield and N



#### Corn Yield and N



#### **Corn Planting Depth and Yield**



#### Wheat - Date of Planting



**Days Relative to Optimum Planting Date** 

#### Data Sources

- Universities
  - Our job is to collect data, report it, AND give our opinion on what it means. Usually pretty conservative.
- Seed and Chemical Companies
  - Pioneer, Monsanto, and Syngenta (to name a few) have or are adding Crop Management personnel to collect production data. Ask for it.
- Collect your own...it is not difficult

#### Variable Rate Technology



#### Guidance Bars = Replication



#### **Important Points**

#### Replication

- Necessary for analysis and required to have confidence in results.
- Often does not require a great deal of extra time if planned correctly.
- Yield Monitors and Yields
  - Use yield monitor to replace weigh wagon (measure grain mass).
  - Measure plot width and length manually.
  - Calculate yields and adjust for moisture as you normally would.
  - Caution with unfiltered yield monitor calculated yields!! Errors could exist in plot length and individual yield point estimates.

### Summary

- Statistics are a tool that help you make informed decisions.
  - You must decide on the "risk" you are willing to take
- The key is to make sure that you are using real data to make decisions. "Plant health" does not increase price or decrease costs.

If you cannot measure it, you cannot manage it"

- Analysis of Variance or Mean Separations work for treatments that have yes/no decisions
  - treated vs untreated; Hyb A vs Hyb B

#### Summary

- Regression or trend analysis is what you want to evaluate rate or response data
  - yield response to fertilizer or to plant population.
- Get as much data on a subject as you can prior to making a decision.
  - Informed vs uninformed decisions
- Do not be afraid to use statistics and if needed, ask for help. There are a lot of people who can help you